Numerical solution of the forced Duffing equations‎ ‎ using Legendre multiwavelets

نویسندگان

  • Behzad Nemati Saray Faculty of Mathematics, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
  • Ramin Najafi Department of Mathematics Maku Branch, Islamic Azad University, Maku, Iran
چکیده مقاله:

‎A numerical technique based on the collocation method using Legendre multiwavelets are‎ ‎presented for the solution of forced Duffing equation‎. ‎The operational matrix of integration for ‎Legendre multiwavelets is presented and is utilized to reduce the solution of Duffing equation‎ ‎to the solution of linear algebraic equations‎. ‎Illustrative examples are included to demonstrate‎ ‎the validity and applicability of the new technique.‎

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

numerical solution of the forced duffing equations‎ ‎ using legendre multiwavelets

‎a numerical technique based on the collocation method using legendre multiwavelets are‎‎presented for the solution of forced duffing equation‎. ‎the operational matrix of integration for‎‎legendre multiwavelets is presented and is utilized to reduce the solution of duffing equation‎‎to the solution of linear algebraic equations‎. ‎illustrative examples are included to demonstrate‎‎the validity...

متن کامل

Numerical Solution of Functional Differential Equations using Legendre Wavelet Method

In this paper, the objective is to solve the functional differential equations in the following form using Legendre Wavelet Method (LWM), 0 f 0 u(t)=f(t ,u( t) ,u( (t))), t t t u( t)= (t), t t ′ α ≤ ≤   φ ≤  (1) where ƒ: [t0, tƒ]×R→R is a smooth function, α(t) is a continuous function on [t0, tƒ] and φ(t)∈C represents the initial point or the initial data. In the present paper, the most impo...

متن کامل

Numerical solution of nonlinear Hammerstein integral equations by using Legendre-Bernstein basis

In this study a numerical method is developed to solve the Hammerstein integral equations. To this end the kernel has been approximated using the leastsquares approximation schemes based on Legender-Bernstein basis. The Legender polynomials are orthogonal and these properties improve the accuracy of the approximations. Also the nonlinear unknown function has been approximated by using the Berns...

متن کامل

Numerical solution of nonlinear integral equations by Galerkin methods with hybrid Legendre and Block-Pulse functions

In this paper, we use a combination of Legendre and Block-Pulse functionson the interval [0; 1] to solve the nonlinear integral equation of the second kind.The nonlinear part of the integral equation is approximated by Hybrid Legen-dre Block-Pulse functions, and the nonlinear integral equation is reduced to asystem of nonlinear equations. We give some numerical examples. To showapplicability of...

متن کامل

Numerical Solution of Interval Volterra-Fredholm-Hammerstein Integral Equations via Interval Legendre Wavelets ‎Method‎

In this paper, interval Legendre wavelet method is investigated to approximated the solution of the interval Volterra-Fredholm-Hammerstein integral equation. The shifted interval Legendre polynomials are introduced and based on interval Legendre wavelet method is defined. The existence and uniqueness theorem for the interval Volterra-Fredholm-Hammerstein integral equations is proved. Some examp...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 5  شماره 1

صفحات  43- 55

تاریخ انتشار 2017-01-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023